Extended Lanczos Bidiagonalization for Dimension Reduction in Information Retrieval

نویسندگان

  • Xuansheng Wang
  • François Glineur
  • Paul Van Dooren
  • Linzhang Lu
چکیده

We describe an extended bidiagonalization scheme designed to compute low-rank approximations of very large data matrices. Its goal is identical to that of the truncated singular value decomposition, but it is significantly cheaper. It consists in an extension of the standard Lanczos bidiagonalization that improves its approximation capabilities, while keeping the computational cost reasonable. This low-rank approximation yields much cheaper computations of the matrix-vector products that are central in many information retrieval tasks. We demonstrate effectiveness of this approach on applications in face recognition and latent semantic indexing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmented Implicitly Restarted Lanczos Bidiagonalization Methods

New restarted Lanczos bidiagonalization methods for the computation of a few of the largest or smallest singular values of a large matrix are presented. Restarting is carried out by augmentation of Krylov subspaces that arise naturally in the standard Lanczos bidiagonalization method. The augmenting vectors are associated with certain Ritz or harmonic Ritz vectors. Computed examples show the ne...

متن کامل

Probabilistic Bounds for the Matrix Condition Number with Extended Lanczos Bidiagonalization

Reliable estimates for the condition number of a large, sparse, real matrix A are important in many applications. To get an approximation for the condition number κ(A), an approximation for the smallest singular value is needed. Standard Krylov subspaces are usually unsuitable for finding a good approximation to the smallest singular value. Therefore, we study extended Krylov subspaces which tu...

متن کامل

Greedy Tikhonov regularization for large linear ill-posed problems

Several numerical methods for the solution of large linear ill-posed problems combine Tikhonov regularization with an iterative method based on partial Lanczos bidiagonalization of the operator. This paper discusses the determination of the regularization parameter and the dimension of the Krylov subspace for this kind of methods. A method that requires a Krylov subspace of minimal dimension is...

متن کامل

Filtered Matrix-Vector Products via the Lanczos Algorithm with Applications to Dimension Reduction

This paper discusses an efficient technique for computing filtered matrix-vector (mat-vec) products by exploiting the Lanczos algorithm. The goal of the proposed method, which is the same as that of the truncated singular value decomposition (SVD), is to preserve the quality of the resulting mat-vec product in major singular directions of the matrix. Unlike the SVD-based techniques, the propose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012